Package: stlARIMA 0.1.0
stlARIMA: STL Decomposition and ARIMA Hybrid Forecasting Model
Univariate time series forecasting with STL decomposition based auto regressive integrated moving average (ARIMA) hybrid model. For method details see Xiong T, Li C, Bao Y (2018). <doi:10.1016/j.neucom.2017.11.053>.
Authors:
stlARIMA_0.1.0.tar.gz
stlARIMA_0.1.0.zip(r-4.5)stlARIMA_0.1.0.zip(r-4.4)stlARIMA_0.1.0.zip(r-4.3)
stlARIMA_0.1.0.tgz(r-4.4-any)stlARIMA_0.1.0.tgz(r-4.3-any)
stlARIMA_0.1.0.tar.gz(r-4.5-noble)stlARIMA_0.1.0.tar.gz(r-4.4-noble)
stlARIMA_0.1.0.tgz(r-4.4-emscripten)stlARIMA_0.1.0.tgz(r-4.3-emscripten)
stlARIMA.pdf |stlARIMA.html✨
stlARIMA/json (API)
# Install 'stlARIMA' in R: |
install.packages('stlARIMA', repos = c('https://ronit10976.r-universe.dev', 'https://cloud.r-project.org')) |
- Data_potato - Normalized Monthly Average Potato Price of India
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
Last updated 3 years agofrom:a7a5f03b02. Checks:OK: 7. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 13 2024 |
R-4.5-win | OK | Nov 13 2024 |
R-4.5-linux | OK | Nov 13 2024 |
R-4.4-win | OK | Nov 13 2024 |
R-4.4-mac | OK | Nov 13 2024 |
R-4.3-win | OK | Nov 13 2024 |
R-4.3-mac | OK | Nov 13 2024 |
Exports:STLARIMA
Dependencies:clicolorspacecurlfansifarverforecastfracdiffgenericsggplot2gluegtableisobandjsonlitelabelinglatticelifecyclelmtestmagrittrMASSMatrixmgcvmunsellnlmennetpillarpkgconfigquadprogquantmodR6RColorBrewerRcppRcppArmadillorlangscalestibbletimeDatetseriesTTRurcautf8vctrsviridisLitewithrxtszoo
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Normalized Monthly Average Potato Price of India | Data_potato |
STL Based ARIMA Forecasting Model | STLARIMA |